

TRENCTANSKY

SAMOSPRÁVNY K + R + A + J

EURÓPSKA ÚNIA EURÓPSKY FOND REGIONÁLNEHO ROZVOJA

SPOLOČNE BEZ HRANÍC

Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika - Česká republika 2007-2013

Tato akce je realizována s finanční výpomocí Zlínského kraje

Novinky z jaderné a částicové fyziky

"Pokud označíme snahu o nalezení příznaků nové fyziky pomocí urychlovače LHC jako ono pověstné hledání jehly v kupě sena, tak v současnosti jsme ve fází, kdy teprve pracně vytváříme zmíněnou kupu sena"

Jiří Chýla

Vladimír Wagner

Ústav jaderné fyziky AVČR, 250 68 Řež, E_mail: WAGNER@UJF.CAS.CZ, WWW: ojs.ujf.cas.cz/~wagner/

1. Úvod

2. LHC dva roky po spuštění

2.1 Horká a hustá hmota
2.2 Rychlé nabírání statistiky
2.3 Hledání Higgse a dalších částic
2.4 Rozdíl mezi hmotou a antihmotou

- 3. Další novinky nejen z CERNu
- 3.1 Superrychlá neutrina
 3.2 Změření posledního směšovacího úhlu v neutrinovém sektoru

3. Závěr

Složení hmoty

Hmota je složena z částic - mezi nimi působí interakce

Důležité nástroje pro popis mikrosvěta:

1) Speciální teorie relativity - rychlosti blízké rychlosti světla, kinetická energie srovnatelná s klidovou 2) Kvantová fyzika - velmi malé hodnoty veličin \rightarrow kvantový a pravděpodobnostní charakter, Heisenbergův princip neurčitosti

Větší detaily, energie a teploty, produkce těžších částic

Experimentální pozorování je rozhodujícím kritériem pro uznání platnosti hypotézy a její přeměnu v teorii

- Stěžejní nástroj srážka urychlených částic
- 1) Nárůst energie → větší detaily

Zatím největší urychlovače $E \sim 100 \text{ GeV} \rightarrow 10^{-18} \text{m}$

- 2) Produkce částic s vyšší klidovou energií (hmotností)
- Klidová hmotnost protonu: ~1 GeV
- LHC srážka protonů s energiemi 7000 GeV (3500 → 4000)

Jádra olova (208 nukleonů) na každý 2700 GeV → 1 123 200 GeV = 1,8·10⁻⁴ J

3) Dosažení co nejvyšších hustot a teplot

Celkové energie už přímo makroskopické – pád 0,02 g z výšky 1 m \rightarrow srážka dvou menších much nebo větších komárů

Hmotnost 1 g se stejnou rychlostí → 5·10¹⁷ J (10 000 hirošimských bomb)

Standardní model

Hmota je tvořena částicemi (fermiony s=1/2), mezi kterými působí interakce, které jsou zprostředkovány výměnou částic (bosony s=celé číslo)

Velmi horká jaderná hmota – počátek našeho vesmíru

Kam se kouká LHC?

Dosažená teplota: ~ 3×10¹² K (100 000krát více než v⁻ nitru Slunce) Dosažená hustota: ~ 10¹⁸ kg/m³

Takové hustoty má i hmota v nitru supernovy a neutronové hvězdy

 $1 \text{ ps} = 10^{-12} \text{s}$

Kvark-gluonové plazma

 $10 \ \mu s = 10^{-5} s$

Hadronová hmota

V pozdější fázi jen nejlehčí baryony – proton a neutron

 $3 \text{ min} = 1,8 \cdot 10^2 \text{ s}$

Atomová jádra – vodík, helium a trochu těžších jader

400 000 let ~ 10^{13} s

Reliktní záření

Z čeho se urychlovač skládá:

Iontový zdroj – produkce nabitých částic -

Elektrostatické nebo proměnné elektrické pole – urychlení částice – urychlovací systém

Magnetické pole – určuje dráhu částice, provádí fokusaci svazku – magnetické čočky vedou svazek a snaží se co nejvíce jej zúžit

Vakuový systém – částice se při urychlování musí pohybovat ve vysokém vakuu – nutný systém vývěv Chlazení – supravodivé magnety potřebují heliové teploty Radiační ochrana – zajištění bezpečnosti pomoci stínění Řídící systém – ovládání, řízení a kontrola práce urychlovače

Zdroj plazmy – elektrický výboj

Urychlovací prvky LHC

Kryogenní systém pro LHC

Řídící centrum urychlovače LHC

Dipólové magnety LHC

V současnosti už dva roky funguje největší urychlovač na světě

Obvod 27 km – slušná linka metra - čtyři experimenty → čtyři zastávky → čtyři křížení dvojice rour

Spouštění magnetu do podzemního tunelu

1700 supravodivých magnetů z nich 1232 největších dipolových 200 teplých magnetů

Tedy 1700 kryogenních propojení. Tedy 50000 kryogenních svarů 200 000 m² vícevrstevné izolace

120 tun supravodivého a supratekutého helia

Spojovací část mezi jednotlivými sekcemi

Nejen připravit hmotu z počátku vesmíru, ale i si ji prohlédnout

Máme na to detektory – a tu jsou jejich úkoly:

- 1) Zachytit co nejvíce částic a určit jejich vlastnosti
- 2) Zachytit a určit energii i těch nejenergetičtějších částic
- 3) Zachytit dráhu krátce žijících částic nebo dráhy jejich produktů rozpadu
- 4) Určit hybnosti částic
- 5) Určit náboje částic

Vnitřní dráhové detektory

Velké dráhové komory (umístěné v magnetickém poli)

Hadronové kalorimetry

Elektromagnetické kalorimetry

(nejmladší "fyzik" na obrázku pochází z české ALICE komunity)

Čekání na ALICI – čekají i čeští fyzikové

Účast našich studentů na instalaci křemíkových driftových detektorů a jejich elektroniky

Srovnání srážek protonů a těžkých iontů

ALICE p+p srážka

ALICE Pb+Pb

První případy srážek dvou jader olova z experimentu ALICE (místo 10 až 100 částic se ve srážce produkuje až 10 000 částic)

Kvark-gluonové plazma – hmota velmi ranného vesmíru

Studium pomocí srážek těžkých iontů

Podstatný rozdíl – doba existence

10 $\mu s \rightarrow 10^{-22} s$

Otázka nastolení tepelné rovnováhy

Experimenty na urychlovači RHIC:

- 1) Prokázána existence QGP (pohlcení výtrysků)
- 2) Chování ideální kapaliny (sQGP)
- 3) Velmi rychlé nastolení tepelné rovnováhy

Různé fáze jaderné hmoty:

Při vysoké teplotě a hustotě energie vzniká kvark gluonové plazma

Fázový přechod jaderné kapaliny v hadronový plyn.

Fázové přechody jaderné hmoty a vody (H_2O) a tvar příslušných potenciálů

Ohřívaná voda

Ohřívaná jaderná hmota

Viskozita tekutin

(inspirace vystoupením Nguyen Dinh Danga)

Odpor tekutin proti střihovému nebo tahovému namáhání – charakterizuje vnitřní tření a závisí na přitažlivých silách mezi částicemi tvořícími tekutinu

Dynamická viskozita η : [Pa·s]

Statická viskozita v: v = η/ρ

Tekutost φ : $\varphi = 1/\eta$

Velmi široké rozmezí pro kapaliny

Největší viskozita – asfalt 230 miliardkrát větší než voda

Universita v Queenslandu (Austrálie) Nejdéle běžící experiment od roku 1930 Zatím 8 kapek (poslední 2000)

Ig Nobel 2005 (John Mainstone a Thomas Parnell)

Vzduch	0,02
Voda	1,0
Etanol	1,2
Glycerin	1 480
Med	až 10 000
Asfalt 230 000 000 000	

Tekutina

viskozita n [mPa·s]

John Mainstone u svého experimentu

Z historie zkoumání viskozity

Plyn:

$$\eta = \frac{1}{3} \rho \bar{l} \bar{v}.$$

Viskozita závisí na součinu:

- 1) Hustoty
- 2) Střední volné dráhy
- 3) Střední rychlosti

Hodnoty (vzduch): 1) Hustota = 1,3 g/l 2) Střední rychlost molekul = 250 m/s 3) Střední volná dráha = 65 nm

James Clerk Maxwell

Maxwellovi závěry o viskozitě plynů (Maxwellův zákon):

- 1) Viskozita nezávisí na změně hustoty (opačně se změní střední volná dráha) tedy i na tlaku
- 2) Závisí na teplotě (roste s ní) protože rychlost v roste s teplotou *T* jako T^n , $\frac{1}{2} \le n \le 1$

Maxwell požádal Stockse o experimentální test, ten odpověděl, že už měřil Sabine a zjistil změnu viskozity s tlakem

(později Stocks zjistil, že závěry plynuly z implicitního předpokladu nulové viskozity při nulovém tlaku)

Maxwell nevěřil a přeměřil: η = 0,0001878 (1+aT) pro vzduch (mezi 0,0167 ~ 1 *atm*) Maxwell experimentátor musel potvrdit Maxwella teoretika

Nejnižší hodnoty viskozity

I extrémně velká viskozita, ale ne extrémně malá ↔ střední volná dráha nemůže být kratší než vlnová délka

Ideální tekutina – velmi nízká viskozita, ale ne nulová

Poměr viskozity a hustoty entropie Φ : $\Phi = \eta/s$ [KSS] $\mathrm{KSS}=rac{k_\mathrm{B}\eta}{\hbar s}$

Kovtunovo, Sonovo a Starinetsovo číslo

Dolní hranice pro viskozitu: $\frac{\eta}{s} = \frac{\hbar}{4\pi k_{B}}$, $s = \frac{\rho}{A}S$

PRL 94 (2005) 111601

Gigantické dipolové rezonance (GDR): jaderná kapalina: (1,3-4,0) KSS pro T=5 MeV

QGP (T > 175 MeV) – ideální kapalina

 $\eta/s = (2 \sim 3)$ KSS.

Co ukázal RHIC ? - Ne ideální plyn ale ideální kapalina

- 1) Vytvoření barevného systému uvolněných kvarků a gluonů
- 2) Silné překročení kritické teploty a hustoty energie
- 3) Nastolení tepelné rovnováhy ještě v době existence barevné fáze – kvark-gluonového plazmatu
- 4) Nejedná se o slabě interagující systém ale o silně interagující systém - ideální kapalina s minimální viskozitou

V oblasti energií urychlovač RHIC – sQGP

Jaderná hmota (kvark-gluonové plazma) je i při těchto mnohem vyšších hustotách energie ideální kapalinou

Srážka jader olova v experimentu ALICE

Podrobné studium chování kvark-gluonového plazmatu a interakci částic v něm

Velikost kolektivního toku stále pomalu roste

Stále se nedospělo k takové teplotě (hustotě energie) aby se změnila v "ideální plyn"

Velikost eliptického toku

Produkce částic

Ukázky kvality detekce a identifikaci částic z rozpadů

Mezony s těžkými kvarky

Pozorování potlačení J/y mezonů v QGP

Menší potlačení v případě LHC je dáno vyšší teplotou a hustotou energie. To vede na velmi vysokou produkci c a anti-c párů a vyšší počet J/ψ mezonů

Studium kolektivních toků

$$dN/d\phi \propto 1 + 2\sum_{n=1}^{\infty} v_n(p_T) \cos\left[n(\phi - \psi_n)\right]$$

Srovnání měření získaných na RHICu (STAR) a na LHC (ALICE)

J. Phys G: Nucl. Part. Phys38(2011)124013

Potlačení výtrysků – zvyšuje se s centralitou srážky

!!!! QGP na LHC má velice podobné vlastnosti těm, které má QGP na RHICu !!!! Phys. Letter B696(2011)30

Velmi úspěšný běh urychlovače LHC během celého roku

2800 shluků, 100 miliard protonů/shluk 600 milionů srážek/s

LHCb Event Display

Rozpad B0 mezonu na pár mion a antimion

Vznik dvojice Z⁰ částic a jejich rozpad na páry mionu a antimionu

Získáno velké množství srážek, produkce velmi těžkých částic (třeba t –kvarků v nebývalém počtu) Higgs však stále uniká, stejně tak supersymetrické částice

Standardní model

Hmota je tvořena částicemi (fermiony s=1/2), mezi kterými působí interakce, které jsou zprostředkovány výměnou částic (bosony s=celé číslo)

Nová částice $\chi_b(3P) = b$ anti-b

Další malý krůček ve spektroskopii hadronů

V budoucnu se dá čekat velký počet nových mezonů i baryonů (jejich excitovaných stavů)

Náznaky pozorování Higgsova bosonu?

Problém s pozadím Náznaky existence higgse u energie 124 GeV

Tevatron skončil! Opravdu?

Baryons with Up, Down, Strange and Bottom Quarks and Spin J=1/2

(c) CERTON L Alingue reserved.

http://para.com

LHCb – studium rozdílu mezi hmotou a antihmotou

Rozpad B_d⁰ částic a antičástic

Program na příští rok a poté

Zimní přestávka končí – start 14. března 2012 (práce v tunelu skončily 21 února)

Během ní vylepšení urychlovače i detektorů

anozatím nePřechod k vyšším energiím 3,5 TeV \rightarrow 4,0 TeV, 1380 shluků \rightarrow 2808 shluků

Plán pro rok 2012:

Experimentům ATLAS a CMS dodat každému integrální luminositu 15 fb⁻¹

V roce 2013 – vylepšení a přechod na energii 7 TeV

Po roce 2020 velké vylepšení tak, aby se nabíralo ročně 200 – 300 fb⁻¹

Později případné zvýšení energie na 16,5 TeV

Neutrina a jejich oscilace

Napadl mne zoufalý způsob, jak se vyhnout problémům se "špatnou" statistikou jader dusíku a lithia a spojitého spektra v β-rozpadu ... možnost, že by v jádrech existovaly elektricky neutrální částice ... Hmotnost těchto "neutronů" by ... neměla být větší než asi jedno procento hmotnosti protonu. V tomto okamžiku si netroufám tuto myšlenku publikovat

"Savanath River Plant" Wolfgang Pauli: Dopis účastníkům konference fyziků v Tübingenu 14. 12. 1930

Částice – neutrální, je slabě interagující s extrémně malou hmotností, spin 1/2

Fred Reines a Clyde Cowan rok 1953

Pro potvrzení nutný intenzivní zdroj neutrin → reaktor Spuštění reaktorů v 50. letech

Prokázání existence antineutrina z reaktoru: 1956

1013 neutrin/cm2s detekováno 3 neutrina/hod

Sluneční neutrina

Raymond Davis Jr. a detekce slunečních neutrin

 $v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^{-}$

Práh reakce 0,814 MeV

1958 - 11400 litrů chloridu uhličitého

Photo courtesy of Brookhaven National Laboratory

" Libovolný experiment, který jako popisovaný nemá dostatečnou citlivost, se nemůže reálně vyslovit k otázce existence neutrina. Svůj postoj bych vysvětlil na tom, že nikdo by nenapsal vědecký článek popisující experiment, při kterém by vystoupal na vysokou horu a z toho, že nedosáhne na Měsíc, by odvodil, že Měsíc je více než dva metry od vrcholku hory."

Nutné přesné sluneční modely – J. Bahcall

Hluboko pod zem: 1,5 km (důl Homestake)

378 000 litrů tetrachlorethenu C₂Cl₄

Pozorováno 2,5 SNU Předpověď 8,6 SNU

SNU = 1 reakce/10³⁸ atomů za den

Ověření: galiový experiment (1990 - ...)

 $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^{-1}$

práh: 0,240 MeV

GALLEX - GNO (Gran Sasso) 30 tun galia

GNO skončil v roce 2006

SAGE (Baksan) 57 tun galia

Určení směru příchodu neutrin

Čerenkovův detektor – nádrž vody SuperKamiokande 22 000 t – pracovní objem 50 000 t – celkový objem 11 000 fotonásobičů

Detekce pomocí rozptylu neutrin na elektronech (n = 1,33 \rightarrow E_{kin}(e) = 0,25 MeV)

Práh: postupně šel od 9 do 5 MeV

Experiment: 0,47(2) SNU Teorie: 1,00(17) SNU

Detekce všech typů neutrin

Detektor s těžkou vodou SNO (1998) (Sudbury Neutrino Observatory)

1000 t D₂O okolo 7000 t H₂O záznam 9500 fotonás.

Energie potřebná k rozbití deuteronu 2,23 MeV

Elektronových neutrin – zhruba třetina Všech neutrin – shoda s modelem Slunce

Klíčová reakce

Neutrina z kosmického záření

Primární složka – vysokoenergetické procesy

Tepelné – oblasti s extrémně vysokými teploty

Reakce- vysokoenergetické procesy, přírodní urychlovače

Rozpad částic temné hmoty – těžké částice – vysoké energie neutrin

Sekundární složka: Spousta mezonů π : $\pi + \rightarrow \mu + + \nu_{\mu}$ $\downarrow \rightarrow e^{+} + \nu_{e}^{+}$ anti- ν_{μ} Intenzivní zdroj neutrin a antineutrin ν_{μ} a ν_{e} poměr mezi počtem ν_{μ} a ν_{e} je $R(\nu_{\mu}/\nu_{e}) = 2$

Oscilace neutrin ze sekundárního kosmického záření

Jak se neutrina produkují pomocí urychlovače?

Urychlovací trubice SPS

Délka zařízení vytvářející neutronový svazek 1200 m

Vlastnosti svazku:

- 1) Čistá mionová neutrina (příměs antineutrin okolo 2%, elektronových neutrin méně než procento)
- 2) Střední energie 17 GeV
- 3) Průměr svazku v místě detektoru 2,8 km

- 1) Urychlení protonů pomocí PS a SPS až na energii až stovky GeV
- Ve srážce s těžkým jádrem vznikají i nabité mezony π
- Pomocí magnetického pole se zformuje svazek kladně nabitých mezonů π
- 4) Kladně nabité mezony se rozpadají na kladný (anti)mion a mionové neutrino
- 5) Miony jsou materiálem zastaveny a svazek neutrin letí směrem ke Gran Sasso

Přeprava magnetického "rohu", který umožňuje formovat svazek nabitých mezonů π , na místo

Experiment CNGS

Studium oscilací mionového neutrina na tauonové Měření rychlosti neutrina

CERN to Gran Sasso

Laboratoř CERN

Podzemní Laboratoř Gran Sasso

Detektor neutrin

Jak se neutrina detekují? – těžce :-(

- 1) Cihly s fotoemulzemi (150 000) vznik a rozpad tauonu
- 2) Plastikové scintilátory časový údaj
- 3) Magnetické spektrometry hybnosti částic

První mion z mionového neutrina

Spuštění zdroje neutrin – 2006 Dokončení systému OPERA – 2008 První a zatím jediné tauonové neutrino v roce 2010

Měření rychlosti neutrin – zhruba dva roky

> První tauon z tauonového neutrina (květen 2010)

Další experimenty s oscilacemi mionových neutrin z urychlovačů

Monitor mionů pro T2K experiment První detekované neutrino po zemětřesení 3. 2 2012

Experiment MINOS

Oscilace reaktorových neutrin

Blízké detektory

Daya Bay – 2 reaktory

reservoir Instal Instal

Ling Ao – 2 reaktory

Vzdálené detektory

Ling Ao II – 2 reaktory

Sin²2 θ_{13} = 0.092 ± 0.016(stat) ± 0.005(syst) χ^2/NDF = 4.26/4 5.2 σ for non-zero θ_{13}

Nyní je možno měřit fázi spojenou z narušením CP a T symetrií

Určení času letu

Atomové hodiny v obou místech

Synchronizaci času i určení přesné vzdálenosti zajišťuje GPS

Nutnost velmi přesného určení umístění všech částí systému

Vliv zemětřesení v oblasti L'Aquila v roce 2009

Co se pozoruje?

Nelze přiřadit konkrétní neutrino ke konkrétnímu protonu a vzniklému mezonu π

Velký statistický soubor detekovaných neutrin \rightarrow tvar neutrinového pulsu

Možnost hledat posun neutrinového pulsu vůči protonovému

Puls – délka 10 000 ns

Dva roky - 16 111 neutrin pomocí 10²⁰ protonů

Přesnost určení vzdálenosti je 20 cm

Světlo 1 m znamená 3 ns

Vzdálenost 732 km \rightarrow 2,43 ms

```
Předběžná kalibrace posun 1048,5 nsKorekce987,8 nsRozdíl60,7 ns\pm 6,9 ns\pm 7.8 ns
```

Neutrina o 2,48 tisícin procenta rychlejší

Jednotlivé pulsy svazku a jejich oscilace

Srovnání tvaru pulsu protonů a neutrin

Co říkají neutrina ze supernovy SN1987A?

Během výbuchu supernovy se produkuje zhruba 10⁵⁸ neutrin
Vzdálenost SN1987A – 168 000 sv.let = 1,47 miliard sv.h
Záblesk neutrin: trvání 12 s počet zachycených 24 elektronová (anti)neutrina (8 – 40 MeV)
Záblesk světla byl zaznamenán o méně než 3 h později

Světlo se dlouho prodírá hmotou supernovy a uvidíme je jen, pokud zamíříme dalekohled správným směrem

Rozdíl mezi rychlostí světla a neutrina menší než 0,2 miliontiny procenta

Nebyl rozdíl v příletu neutrin s různou energií → hmotnost neutrina < 10 eV

Testovací experiment s krátkým pulzem Zkrácení pulzů z urychlovače na 2 ns a 500 ns mezera Je tak přesně definován čas, kdy neutrino vzniklo Experiment běžel zhruba dva týdny Zhruba dvacet zachycených neutrin Jedno zachycené neutrino denně

Zatím pouze dva týdny, může stačit – další ozařování v květnu

Experiment ICAROS

Také v Gran Sasso detekuje neutrina z CERNu

Časově projekční komory s tekutým argonem → velmi přesné měření energie neutrin

Nezávislé časování a synchronizace času Stejný pulzní režim → sedm neutrin

Nepozorován posun vůči rychlosti světla

Rozřešení se blíží

Experiment OPERA našel dva možné zdroje systematické chyby:

- 1) Oscilátor dodávající časové značky pro GPS synchronizaci
- 2) Optický konektor přenášející GPS signál do hlavních hodin OPERy

V květnu nový experiment s krátkými pulsy – využijí jej všechny experimenty v Gran Sasso

SPS pracuje pro neutrinovou produkci i pro LHC LHC odstartovalo z energií 4 TeV

Využití neutrin?

- 1) Komunikace s ponorkami
- 2) Identifikace tajných reaktorů
- 3) Rychlé spojení s protinožci
- 4) Tomografie Země a planet

5) Komunikace ve vesmíru v oblastech s velkou hustotou (pravděpodobnost interakce roste s energií)

Zdroj neutrin Numi

detekce Minerva

Poselství a jeho dekodování

Závěr

- 1) Intenzivní analýza získaných dat nové informace o standardním modelu
- 2) Studium sQGP stejné vlastnosti jako u energie urychlovače RHIC
- 3) Hledání higgse a dalších nových částic v tomto roce se situace okolo higgse vyřeší
- 4) Nyní běží při energii 4,0 TeV, příští rok přestávka pro přechod k 7 TeV
- 5) Tevatron koncem září skončil největší objev t kvark
- 6) Nové zajímavosti okolo neutrin, nadsvětelné rychlosti asi nemá, ale změřil se nejmenší ze směšovacích úhlů, první přenos informací pomocí neutrin

Fyzika neutrin